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1 Identifying alternatively spliced introns using LeafCutter

Starting from alignment files in .bam format, junctions from split-reads that map with minimum 6nt into

each exon are extracted using a script we provide (1) based on two OLego helper scripts. Then, the LeafCut-

ter clustering program (2) can be used to identify intron clusters supported by at least 30 (option -m) total

reads (across all samples) and introns supported by more than 0.1% (option -p) of the total read counts for

the entire cluster. The number of reads supporting each intron and cluster is then counted in all samples

separately and collated in a table for downstream analyses (Supplementary Note Figure 1).

Because LeafCutter focuses on intron splicing rather than whole isoform quantification, alternative tran-

scription start site or polyadenylation sites are not captured. However, several prevalent types of alternative

splicing (Supplementary Figure 1) are equivalent to specific intron excision events.

2 Comparison of LeafCutter to other methods for differential splicing analysis

2.1 rMATS, MAJIQ, and Cufflinks2

To compare the ability of different software to detect differential splicing, a fair comparison needs to overcome

(1) differences in p-value calibration, and (2) differences in what is being measured e.g. transcript ratios

versus local splicing events. As test data, we chose to contrast lymphoblastoid cell lines (LCLs) derived from

Yoruba individuals against LCLs derived from central european (CEU) individuals. We chose LCLs as they

are homogeneous cell lines and splicing differences between populations should be subtle; both properties

are favorable for comparing sensitivity of the methods.

To overcome (1) the problem of p-value calibration, we computed the empirical false discovery rate (FDR)

as follows:

(a) First, we identify differential splicing between YRI and CEU LCLs using each method and record the

p-value (1-posterior for MAJIQ, see subsection below) distribution for all tests.

(b) Next, we permuted labels on the samples such that ∼ 1/2 of CEU samples are labeled as YRI samples

and vice versa. We then run each method on these permuted samples and the p-value (1-posterior for

MAJIQ) distribution are once again recorded.
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(c) The number of differential splicing events discovered at a certain FDR (e.g. 5%) is defined as the

maximal number of events with test p-value less than p in the real data (Nreal) such that the number

of events with test p-value less than p in the permuted data (Nperm) respects the following constraints

Nperm/(Nperm +Nreal) < FDR.

The resulting p-value distributions of the 3v3, 5v5, 10v10, and 15v15 comparisons are shown in (Supplemen-

tary Figure 7). We observed that LeafCutter p-values were generally well-calibrated, which resulted in the

largest number of differentially spliced events compared to rMATS, MAJIQ, and Cufflinks2.

We observed that Cufflinks2 p-values were very conservative (see Cufflinks subsection below). We therefore

report the number of significantly differentially spliced events from Cufflinks2 directly. Interestingly, Cuf-

flinks2 reports 19 significantly different splicing events in the 3v3 comparison, but not in comparisons with

large sample sizes.

To overcome (2) the problem of differences in what events are being measured, we collapsed all events in

rMATS and MAJIQ that shared a single splice site into a single event (as is done in LeafCutter).

2.2 MAJIQ

Instead of computing p-values for differentially splicing tests, MAJIQ computes posterior values reflecting

the confidence that a splicing event is differentially spliced at a ∆Ψ of at least P which is an user-defined

parameter. In our tests, we chose P to be 0.05. Choosing other values of P , e.g. 0.01 resulted in similar or

worse performance.

In principle it should be possible to use the posterior probabilities from MAJIQ’s Bayesian model to

directly control FDR. In particular, taking events with posterior probabilities 1-F should control FDR at F.

However, our permutation analysis shows this is clearly not the case since this approach results in a highly

inflated false positive rate (FPR) under the null. The fact that MAJIQ does not seem to give “true” posterior

probabilities suggests some degree of model mis-specification, i.e. that the statistics of real RNA-seq counts

do not quite match the assumptions made by the MAJIQ differential splicing model.

2.3 Cufflinks2

We sought to understand the source of Cuffdiff2’s overly conservative p-value distribution under the null. To

test for differential isoform usage for a specific gene Cuffdiff2 considers estimated isoform usage proportions
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for a gene in two groups, denoted κ̂A and κ̂B as well as associated posterior covariances Σ̂A and Σ̂B . The test

statistic used is the Jensen-Shannon distance (JSD), d =
√
KL(κ̂A|m) +KL(κ̂B |m) with m = 1

2 κ̂
A + 1

2 κ̂
B .

Under the null κ̂A and κ̂B are drawn from the same distribution, which Cuffdiff2 assumes to be multivariate

normal. To approximate the sampling distribution of d, 105 pairs of samples are drawn from N(κ̂A, Σ̂A), and

the JSD for each pair. The procedure is repeated using N(κ̂B , Σ̂B) and the two resulting empirical p-values

are averaged.

To test the calibration of this procedure we simulated an idealized scenario where 1000 reads in each of

two conditions are unambiguously mapped to 5 isoforms of a gene. The true (shared) usage proportions

are sampled uniformly from the 5-simplex. Per condition counts are sampled from a Dirichlet-multinomial

distribution to model overdispersion, with a concentration parameter c = 10, typical for RNA-seq data.

We obtained maximum likelihood estimates of κ̂A and κ̂B under the “best-case” scenario of knowing the

true c, and corresponding Σ̂A and Σ̂B estimates using the inverse Hessian of the log likelihood function.

We then performed the Cuffdiff2 procedure using these values. The whole procedure was repeated for

100 different simulated true usage proportions. This procedure recapitulates the overly conservative p-

value distribution (Supplementary Note Figure 2 and Supplementary Figure 7) we observed when applying

Cuffdiff2 to permuted real RNA-seq data. We hypothesize that the root cause of the problem is that the

multivariate normal is a poor approximation for distributions constrained to the simplex, and as a result the

estimated sampling distribution of d is considerably more dispersed than it should be.

2.4 Comparison of false negative rates

To evaluate the false negative rates of differential splicing methods, we simulated sequencing reads for 160

protein coding genes each with 2 to 15 transcripts. For each gene, we only considered transcripts that differed

by at least one overlapping intron when compared to another transcript to avoid cases where two transcripts

only differ e.g. in the first or last exon or in an intron retention event (neither of which LeafCutter aims to

detect). We then simulated reads from these transcript models as follows:

1. We simulated 8 biological samples each with 5 technical replicates.

2. For each gene, we set a random transcript’s expression to 1X (no change), 1X, 1X, 1.1X, 1.25X, 1.5X,

3X, and 5X in the 8 biological samples in random order (note that we set 1X for 3 of 8 samples, so there

are 3 comparisons with no change of transcript expression; we used these to compute false positive

rates).
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3. We used polyester1 to simulate sequencing reads, obtaining 8 × 5 = 40 RNA-seq samples (we used

default parameters, e.g. 30X coverage and default error distributions).

4. We mapped reads from each sample using STAR and applied all four differential splicing detection

methods on all pairwise (8 choose 2) = 28 comparisons.

5. We computed the effective transcript fold-change for each gene (a transcript might be set to 1.5X and

3X in the two samples that are being compared resulting in a effective fold change of 2X) in all 28

pairwise comparisons.

6. We then collected all p-values for every gene/comparison (min p-value/max posterior if more than one

splicing event is tested per gene) and plotted their differential splicing test p-values binned by their

effective transcript fold-change (Supplementary Note Figure 3).

7. For each effective transcript fold-change, we computed the true positive and false positive rates for all

possible p-value or posterior cutoffs (Supplementary Figure 8).

From these simulations and the receiver operating characteristic (ROC) curves, we conclude that while

Cufflinks2 appears to detect more transcripts with 1.1 fold-difference at reasonable FDRs, LeafCutter out-

performs all three other methods when transcripts differed by 1.25-fold or more (Supplementary Figure 8).

Of the four methods tested, Cufflinks2 is the only method that estimates transcript levels, which might ex-

plain its higher power in detecting small differences in transcript expression. Interestingly, the performance

of MAJIQ and LeafCutter were nearly identical when evaluated on transcripts that differed by 3-fold or

more, but LeafCutter outperformed MAJIQ when differences were more subtle. This can be explained by

the observation that LeafCutter has a lower false positive rate than compared to MAJIQ (see LeafCutter

and MAJIQ panels at 1X effective fold-change in Supplementary Figure 3).

2.5 Additional comparisons

As further comparisons and to ensure that the differentially spliced events detected using LeafCutter are not

simply noise. We first asked about the correlation of p-values between comparisons with varying sample sizes.

Here, we only compared LeafCutter to rMATS as MAJIQ do not report p-values and Cufflinks2 p-values are

overly conservative. To do this, we computed the Spearman correlation of the − log p of the tested introns

in the 15v15 comparison versus the corresponding − log p of the tested introns in the 3v3, 5v5 and 10v10

comparisons. As expected, the correlations increase monotonically for both methods as sample size increases
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reflecting an increase in precision in our effect size estimates (Supplementary Note Figure 4a). However, we

do observe a significantly higher correlation for LeafCutter compared to rMATS, suggesting that LeafCutter

is more robust to comparisons involving fewer samples.

We further observed that the ability of LeafCutter to recall genes with evidence of differentially splicing

discovered using an rMATS analysis was similar to that of MAJIQ, while Cufflinks2 showed the worst

performance of all (Supplementary Note Figure 4b).

To estimate the concordance between methods, we ranked genes by our differential splicing p-values,

and asked about concordance at different bins of significance levels (50 genes per bin). We found that for

the most significant bin (i.e. the top 50 most significantly differentially spliced genes), the concordance was

high (65–75%) between rMATS and LeafCutter (we used a p-value cutoff of 0.05 to determine concordance)

and even higher (80–82%) between LeafCutter or rMATS top genes and MAJIQ genes (we used a posterior

> 0.99 to determine concordance). These observations (Supplementary Note Figure 5a,b) are in line with

our expectation that concordance rates rapidly decrease as our power to detect differentially spliced genes

drops to zero.

Because LeafCutter, rMATS, and MAJIQ all measure splicing at a local level and not at the gene/isoform

level, we next verified how consistent LeafCutter was with other predictions in terms of these local events.

To this end, we ranked LeafCutter associations in terms of their p-values and asked whether LeafCutter

introns shared at least one splice site with introns that were predicted to be differentially spliced by rMATS

(p < 0.01) and MAJIQ (posterior > 0.95). We found that ∼ 90% of the introns that were found to be most

significantly differentially spliced using LeafCutter shared a splice site with rMATS and MAJIQ, suggesting

that LeafCutter identified the same differentially spliced events (Supplementary Note Figure 5c). In contrast,

only ∼ 60% of the events shared a spliced site when no associations was in LeafCutter (p > 0.5). Although

60% might appear high for the sharing between two “random” introns, it is useful to note that these are

conditioned on introns that show (1) alternative splicing and (2) are differential spliced in rMATS or MAJIQ.

The random overlap between LeafCutter-tested introns and rMATS-tested introns is less than 20%.

2.6 RAM usage

To measure RAM usage across methods, we used a custom script which calls strace -e trace=mmap

,munmap,brk on the main programs, except for rMATS. We found that rMATS launched additional processes

that are not measured directly. We therefore ran our custom script on rMATS.3.2.5/processGTF.BAMs.py

which appears to be the most RAM intensive script of the rMATS pipeline.
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3 RNA-seq data processing

3.1 GTEx for intron discovery

We downloaded 2,192 RNA-seq samples from GTEx (Supplementary Note Table 1). To analyze these, we

used OLego (v1.1.5)2 to map the RNA-seq reads to the human genome (hg19) and processed the resulting

.bam files using LeafCutter. Specifically, we used the following command:

olego -v -j hg19.intron.hmr.brainmicro.bed -e 6 hg19.fa.

The choice of OLego2 is based on our previous experience that it performs well for discovering unanno-

tated exons of small length (e.g. 9nt micro-exons)3. OLego is a program specifically designed for de novo

spliced mapping of mRNA-seq reads, while STAR4 does best when a set of junction is provided. Since

a chief objective of our GTEx analysis was to identify novel exons and to identify conserved alternative

splicing events across multiple species with annotations worse than that of human, we used OLego for our

GTEx differential splicing analyses (we used STAR for sQTL analyses because of fast running time and high

accuracy in mapping). To quantify the differences in mapping of the two aligners, we picked at random five

RNA-seq samples from the GTEx consortium that we previously aligned using OLego and re-aligned them

using STAR. We next analyzed the correspondence between the number of junction reads for each junction

across the two aligners (Supplementary Note Figure 6). We found that while there are junctions whose read

counts are orders of magnitude different, only 4.8% of junctions differed by a count fold-difference of 1.1 or

more (0.94% of junctions differed by a count fold-difference of 2 or more).

3.2 GEUVADIS (YRI) for sQTL methods comparison

To compare splicing QTL (sQTL) calling methods, we aligned 85 YRI LCL samples from GEUVADIS using

STAR two-pass and used WASP to remove reads that mapped with allelic biases5. These aligned reads were

used as starting point for each of the sQTL calling methods. Specifically, the following command was used:

STAR --genomeDir STAR_index --twopassMode --outSAMstrandField intronMotif

--readFilesCommand zcat --outSAMtype BAM Unsorted
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3.3 GEUVADIS (CEU) for sQTL mapping

To control for differences in mapping procedures, we downloaded the .bam files directly from ArrayExpress (E-

GEUV-3) and processed them using LeafCutter to obtain intron clusters and quantifications. We recommend

the use of WASP5 to correct for biases caused by allelic reads. However, to make our comparison to other

tools fair, we used the aligned reads available on ArrayExpress, and removed all clusters with an association

to a SNP that overlap junction reads (see section entitled “sQTL mapping using LeafCutter”). This approach

is conservative as some allelic reads do not map with a bias.

3.4 GTEx for sQTLs mapping

Again, to control for differences in mapping procedures, we used the .bam files provided by the GTEx

consortium for sQTL mapping, and removed all clusters with an association to a SNP that overlap junction

reads.

4 Identification of unannotated introns in tissues from GTEx

To obtain a comprehensive set of annotated introns, we downloaded the GENCODE (v19), UCSC, and

RefSeq annotation databases in .gtf format. We classified introns as annotated if their 5’ and 3’ splice sites

correspond to the end and start, respectively, of two consecutive exons in at least one transcript. As such it

is possible that both 5’ and 3’ splices sites of a novel intron are annotated. We note that although a large

proportion of annotated introns are present in all three databases, we found that the GENCODE annotation

has the most comprehensive list of introns.

To estimate the number of unannotated alternatively excised (AE) introns, we first mapped 2,192 RNA-

seq samples from 14 tissues (GTEx) to the human genome (hg19) using OLego, allowing de novo splice

junction predictions. We then used LeafCutter to identify alternatively excised introns by pooling all junction

reads. We then restricted our analyses to AE introns that were supported by at least 20% of the total number

of reads that support introns from the clusters they belong to in at least 25% of all samples, considering

each tissue separately. Although there is no minimum read count (an intron supported by 20 reads, 20% of

100, is less likely to be the outcome of noisy splicing than one supported by 2 reads out of 10), we reasoned

that requiring 20% percent-splicing in 25% of all samples will filter out most sequencing technical artifact

and noisy splicing. Importantly, using different cutoffs does not alter qualitatively our conclusions. This

resulted in 70,722 AE introns that met these criteria, of which 22,278 (31.5%) AE introns were absent from
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all three annotation databases.

To investigate the functionality of these unannotated introns, we asked whether the unannotated splice

sites of the 22,278 AE novel introns show signature of sequence conservation across vertebrates. To do this, we

divided splice sites into three classes: (1) control splice sites, which are annotated in one or more databases,

but whose cognate splice site is unannotated, (2) the cognate splice site itself, and (3) splice sites of introns,

for which both splice sites are unannotated. To compute sequence conservation, we average the phastCons

score of the predicted splice sites (over 96% of which are AG/GT) plus 2 flanking bases. Interestingly, we

find that the average sequence conservation of unannotated splice sites is higher if its cognate splice site is

annotated (Figure 2a, Supplementary Figure 4).

4.1 Validation of unannotated junctions in Intropolis

To verify that these unannotated splicing events are not a result of mapping errors or artefact unique to sam-

ples from GTEx, we examined the number of splicing junctions that could also be found in the Short Read

Archive (SRA) using Intropolis6 (note that GTEx samples were excluded from the SRA). Intropolis

processed 21,504 human RNA-seq samples from the Sequence Read Archive (SRA) using RAIL-RNA to

align and refine junction calls to improve sensitivity7. This analysis therefore provides an additional repli-

cation of the RNA-seq aligner (i.e. OLego) that we used to identify unannotated splicing events. Because

the SRA does not collect uniform cell-type or tissue labels for each sample, we used the cell-type or tis-

sue labels predicted by phenopredict8 to assign tissue identity to each SRA sample. Using this data, we

quantified the number of alternatively spliced junctions identified in our study that can also be found in

SRA samples (Supplementary Figure 2). Overall, we found that, for instance, 86% of all novel junctions

identified in GTEx testis using LeafCutter could be replicated in testis samples from the SRA (94% of

unannotated heart junctions could be found in heart SRA samples). This is particularly impressive because

(1) at most 56% of all unannotated junctions could be found in any other SRA tissues and (2) considering

all tissues together increased the proportion of unannotated junctions “replicated” by only 4%, to 90%.

These observations cannot be simply explained by a better sampling of testis in the SRA, as, for example,

only 77% of the novel heart junctions could be found in SRA testis samples versus 94% in SRA heart samples.

Because the analysis above only quantified presence or absence of the unannotated junctions in at least

one sample from each tissue, we next characterized unannotated junctions by examining the proportion of

samples in which they could be found by tissue (Supplementary Note Figure 7). As expected, we found
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that unannotated junctions discovered in a given tissue tend to be present in a significant higher proportion

of samples from the same, corresponding, tissue. Again, this suggests that unannotated junctions likely

represent real splicing events that were not previously annotated as they tend to be highly tissue-specific.

To further profile this set of unannotated introns, we quantified their tissue-specificity, their levels of

usage, and the type of splicing patterns they generally correspond to. As expected, we found that the

vast majority of novel junctions were present in only a single GTEx tissue (Supplementary Figure 3a).

Similarly, we found that novel junctions identified in a tissue were used at a significantly higher levels in

the corresponding tissue than in other tissues (Supplementary Figure 3b), the differences were particularly

striking for novel junctions discovered in testis. When we characterized the type of splicing events in which

the unannotated introns were apart of, we found that, interestingly, 31.7% of all clusters with unannotated

introns were complex, i.e. included at least one exon skipping and one alternative splice site event. This is

nearly twice as many as compared to the 16.6% of complex clusters that are annotated. Overall, we conclude

that unannotated junctions are relatively lowly used, tend to be tissue-specific, and often involve complex

splicing patterns.
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5 Statistical models

For cluster C containing J possible introns, let yij denote the count for sample i and intron j (and cluster

total niC =
∑
j′ yij′), and xi denote a P -vector of covariates.

5.1 Beta-binomial GLM.

Our initial approach was to test each specific intron j of a cluster using

yij |niC ∼ BB(niC , αpi, α(1− pi)), (1)

pi = σ(xiβ + µ) (2)

where BB is the beta-binomial distribution and σ(x) = 1/(1 + e−x) is the logistic function. Here the

parameters to be learnt are the P -vector β, intercept µ and concentration parameter α. Higher values

of α correspond to the underlying beta distribution concentrating around pi, and therefore to less count

overdispersion. In particular as α→∞ the BB likelihood converges to a multinomial likelihood, recovering

a logistic regression model.

Optimization. For both the beta-binomial and Dirichlet-multinomial models we use the Bayesian prob-

abilistic programming language Stan9 to define the model, generate efficient C++ code for likelihood and

gradient calculation, and to perform optimization using LBFGS.

Regularization. For some cases the likelihood as a function of the overdispersion parameter can be ex-

tremely flat, leading to numerical instability. In order to stabilize the optimization we use very weak regu-

larization in the form of the prior

α ∼ Gamma(1 + 10−4, 10−4) (3)

We experimented with two different versions of the DM GLM. The first uses a shared concentration

parameter αj = α for all introns j in a cluster (the beta-binomial GLM is a special case of this model). The

second allows a different αj for each intron in the cluster.

Identifiability. The DM GLM shares with the more standard Multinomial GLM that has a spurious degree

of freedom: in particular, adding a constant to the input of the softmax does not change its output. To
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remove this degree of freedom from the model we parameterize each βj as

βjp := β̄p(β̃jp −
1

J
) (4)

where β̃1p, ..., β̃Jp is constrained to lie on the J-simplex, i.e. β̃jp ≥ 0,
∑
j β̃jp = 1, a constraint Stan naturally

handles using a change of variables.

5.2 Likelihood ratio tests

Likelihood ratio tests are generally better calibrated than alternatives such as Wald statistics for testing for

the significance of covariates, especially for modest sample sizes. We optimize wrt to β, µ, α separately for

the null and alternative models (excluding and including the group indicator x respectively) to obtain log

likelihoods λ0 and λ1 (for efficiency we initialize the optimization for the alternative model using the null

model parameters) and then perform a likelihood ratio test: under the null 2(λ1 − λ0) ∼ χ2
ρ where ρ is the

appropriate degrees of freedom. For the beta-binomial GLM ρ = P1 − P0 where P0 and P1 are the number

of covariates in the null and alternative models respectively. For the Dirichlet-multinomial GLM we have

ρ = (J − 1)(P1 − P0) where J is the number of introns in the cluster.
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6 Differential intron excision analyses

6.1 Identification of tissue-dependent intron excision levels

We used LeafCutter’s Dirichlet-multinomial GLM to identify intron clusters with at least one differentially

excised intron. We searched for intron excision level differences between all tissue pairs. However, we should

note that owing to sample size differences, we will have different power to detect differential splicing of

varying magnitude between pairs (we can detect splicing differences of small magnitude only in comparisons

with large sample sizes). When we hierarchically clustered all samples according to the intron excision levels

of introns that were present (i.e. were supported by reads) in all species, we saw a mix between tissue

and species clustering (Supplementary Figure 10). However, when we conditioned on introns that were

differentially excised across human tissue pairs according to LeafCutter, we saw a clear clustering by tissue

(Figure 3d).

6.2 Effectiveness at small sample sizes

RNA-seq experiments are often performed on a handful of samples only. To determine whether LeafCutter

is effective in this setting we performed clustering, quantification and differential intron usage analysis on

4 male brain and 4 male muscle samples from GTEx. As a “bronze standard” we additionally performed

quantification and differential splicing on 110 muscle and 110 brain samples (using the introns and clusters

identified using 8 samples). With only N = 8 samples, LeafCutter appears to be well-calibrated under

permutations (Supplementary Figure 9a) and has sufficient power to detect 885 clusters with evidence of

differential intron usage (FDR 10%, maximum absolute effect size > 1.5), compared to 1906 found at

N = 220. The per cluster p-values are highly correlated between the small and full sample sizes (R2 = 0.72,

Supplementary Figure 9b), and 98% of the clusters significant at N = 8 are also significant at N = 220. Per

intron effect sizes between the two sample size settings are also highly correlated (R2 = 0.49, Supplementary

Figure 9c), although as expected the variance of the N = 8 effect sizes is large. This is particularly the case

when the intron is only observed at all in one of the two tissues (Supplementary Figure 9d).

6.3 Pan-mammalian tissue clustering of intron excision profiles

To evaluate the conservation of intron excision profiles across mammalian tissues, we used OLego to map

RNA-seq data10 from eight organs (testes, heart, kidney, liver, lung, brain, colon, and spleen) in four

mammals (mouse, rat, cow, and rhesus macaque) to their respective genomes. We then projected all introns
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supported by RNA-seq reads onto the human genome using liftOver and clustered projected introns from

all four mammals and human GTEx samples using LeafCutter. We then focused on four disjoint pairwise

comparisons (Testis vs Kidney, Muscle vs Colon, Heart vs Lung, and Brain vs Liver, Figure 11).

7 sQTL mapping using LeafCutter

7.1 Mapping sQTLs in GEUVADIS LCL samples (linear regression)

To map sQTLs in GEUVADIS LCLs samples, we restricted our analysis on 372 samples derived from Eu-

ropean individuals. We downloaded genotype files from ArrayExpress (E-GEUV-1). We used LeafCutter

to obtain read proportions for all introns within alternatively excised intron clusters. We then standardized

the values across individuals for each intron and quantile normalized across introns11 and used this as our

phenotype matrix. We then used linear regression (as implemented in fastqtl)12 to test for associations

between variants (MAF ≥ 0.05) within 100kb of intron clusters and the rows of our phenotype matrix that

correspond to the introns within each cluster. As covariate, we used the first 3 principal components of the

genotype matrix plus the first 15 principal components of the phenotype matrix. To estimate the number

of sQTLs at any given false discovery rate (FDR), we used the correct p-values from fastqtl, and then used

Bonferroni correction to control for the number of introns we test per cluster (note that this is conservative).

We then use Benjamini-Hochberg to estimate the FDR (sample permutations show that our association

p-values at this step are well calibrated).

Unlike for YRI RNA-seq data where we used WASP5 to correct for biases in allelic reads, we did not

correct for biases caused by allelic reads for the CEU comparisons to keep comparisons fair with previous

GEUVADIS analyses. To avoid biases, we removed all associations that might be caused by SNPs that

overlap junction reads. To do this, we removed all intron clusters that had a variant that were 70 or fewer

base pairs (GEUVADIS RNA-seq read length is 75bp and at least 6nt must overlap with all exons) away

from the splice sites (in the exonic part).

7.2 sQTL mapping comparison between LeafCutter, Cufflinks2 and Altrans

We ran LeafCutter, Cufflinks2 and Altrans to estimate isoform and splicing events usage, respectively, on

all 85 Yoruba WASP-processed5 RNA-seq aligned data. We then standardized the values across individuals

for each isoform/splicing event usage and quantile normalized across introns11. As covariate, we used the

first 3 principal components of the genotype matrix plus the first 15 principal components of the phenotype
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matrix. We then used fastqtl12 to test for associations between variants (MAF ≥ 0.05) within 50kb of

the transcript (Cufflinks), the splicing event (Altrans), or splicing cluster (LeafCutter). To estimate the

number of sQTLs at any given false discovery rate (FDR), we used the correct p-values from fastqtl, then

use Benjamini-Hochberg to estimate the FDR. Altrans discovers splicing events using a forward and a reverse

pass on the aligned RNA-seq data, thereby producing two measurement tables. To allow fair comparison

between Altrans and the other methods, we combined forward and reverse splicing QTLs and collapsed all

events that shared a splice site together (as is done in LeafCutter).

7.3 Sharing of sQTL discoveries between LeafCutter, Cufflinks2 and Altrans

To quantify the proportion of LCL sQTLs that are shared between Cufflinks2, Altrans, and LeafCutter,

we first took the most significant SNP-gene/cluster pairs for every gene/clusters that had a sQTL at a

10% FDR. Note here that the following observations were qualitatively the same when we used a 1% FDR

cutoff. We then collected the p-values of the associations of the SNP-gene pairs (when there were more

than one splicing event tested per genes, we took the minimum p-values times the number of tested events)

(Supplementary Note Figure 8) and used the Storey’s π0 method13 to estimate the proportion of shared

discoveries (Supplementary Figure 12).

Overall, we find a higher pairwise sQTL sharing between LeafCutter and either of the two other methods

(Altrans and Cufflinks2) than compared to the sharing between Altrans and Cufflinks2. Conversely, we

found that while LeafCutter identified more sQTLs at 10% FDR, LeafCutter sQTLs were more enriched in

low sQTL p-values as measured by Altrans or Cufflinks2. These observations suggest that LeafCutter is both

more sensitive (lower proportion of false negatives) and more accurate (lower proportion of false positives).

7.4 Mapping sQTLs in GEUVADIS LCL samples (Dirichlet-multinomial GLM)

In addition to using linear regression, we also used LeafCutter’s Dirichlet-multinomial GLM to map sQTLs.

This approach has two main advantages: (1) it accounts for the over-dispersion of read count data, and

(2) it combines signal from changes in intron excision levels across the entire cluster instead of considering

each intron independently. However, when we applied to our GEUVADIS data and controlled FDR using

permutations, we found fewer sQTLs than our linear model approach, likely driven by clusters with heavy-

tailed count distributions which are effectively handled by the quantile normalization in the linear approach.
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7.5 Mapping sQTLs in four GTEx tissues

To identify sQTLs in GTEx tissues, we used the same strategy as in GEUVADIS LCLs (linear regression).

However, we used the first 5 genotype PCs and the first 10 PCs as covariates (5+10 instead of 3+15).

8 sQTL analyses

8.1 Identification of functional enrichment of sQTLs

As in earlier work14, we found that LeafCutter sQTLs were strongly enriched within or close to the cluster

they affect (Supplementary Figure 13). To identify functional categories enriched in sQTLs, we first anno-

tated all variants using SnpEff version 4.1f. We next sampled at random ∼200,000 SNPs that are located

near genes (i.e. had the annotation “Upstream”, “Downstream”, “Intronic”, or were exonic variants). This

is because we only test SNPs that are near genes. The number of sampled SNPs corresponds to 50 times the

number of sQTLs identified in our study. We computed the log-fold enrichment in functional annotations of

the top most significant sQTLs (n = 4, 543) over this random sample of SNPs. Finally, to obtain confidence

intervals, we repeated the random sampling procedure 500 times.

8.2 Comparison with GEUVADIS exon eQTLs, and trQTLs

Although LeafCutter does not explicitly search for genetic variants that are associated with differences in exon

level splicing or transcript ratios, we expected that these variants will also affect intron excision, which are

detected by LeafCutter. To verify this, we compared the distribution of p-values from the association between

LeafCutter intron excision and genome-wide SNPs to the p-values from the association between LeafCutter

intron excision and SNPs that were previously classified as exon eQTLs and transcription ratio QTLs in

GEUVADIS. More specifically, we downloaded the list of exon eQTLs and trQTLs from ArrayExpress (E-

GEUV-3) and for each exon/gene took the SNP with the strongest association to exon level or transcript

ratio. We then computed the association p-values of these SNPs with all tested LeafCutter intron excision

levels, using Bonferroni correction to adjust our p-values. As expected both exon eQTL and trQTL SNPs

were enriched in strong associations to intron excision levels compared to random SNPs, and trQTL SNPs

were most enriched in strong associations.

We next wished to verify that trQTLs detected in GEUVADIS were mostly identified as LeafCutter intron

sQTLs. We again took the best trQTL SNP for each gene, and estimated the number that were associated
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with a cluster at a corrected p-value < 0.05. To correct for SNPs tested against multiple clusters, we used

Bonferroni correction to adjust the p-value of the strongest association. We find that 399 (81.3%) of the

491 top trQTLs we tested are significantly associated (p < 0.05); this percentage is likely higher because

our Bonferroni correction is conservative. Furthermore, as expected, when we use the same procedure to

ask how many of the top 491 trQTLs are significantly associated to intron splicing when our sample labels

are permuted, we find that only 4.7% are (our statistical tests are well calibrated; ∼5% of our tests should

achieve a 0.05 significance under the null model).

8.3 Relationship between gene expression levels and power to detect sQTLs

We examined the expression profiles of the genes with significant sQTLs detected by LeafCutter. As expected

we found a strong positive relationship between our power to detect a sQTL for a gene and the expression

level of a gene (Supplementary Note Figure 9a). Indeed, while most annotated genes (including non protein-

coding genes) were expressed at very low levels, we found almost no sQTLs for genes whose expression were

less than 0.025 RPKM. While there is a clear decrease in LeafCutter’s ability to identify sQTLs in lowly

expressed genes (Supplementary Note Figure 9a), we were able to find sQTLs for many lowly-expressed

genes, starting from 0.1 RPKM (Supplementary Note Figure 9b).

8.4 Replication of sQTLs across GTEx tissues

To estimate the proportion of sQTLs that are replicable across tissue types, we took the best SNP of each

sQTL-cluster pair for each tissue and asked whether the sQTL association was significant (p < 0.05) in

another tissue. This estimate is likely to be conservative as it does not account for incomplete power. The

replication is therefore likely to be even higher than our current estimates of 75–93%.

8.5 Tissue-specific sQTLs

To identify tissue-specific sQTLs, we searched for genetic variants that were associated significantly with

intron excision levels in one tissue, but not in any of the other three tissues (p > 0.1), requiring all tissues

to have junction reads in the intron cluster.
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9 LeafCutter sQTL signals in genome-wide association studies

To verify that LeafCutter sQTLs can help us identify disease-associated variants that function by modulating

splicing, we downloaded summary statistics from two autoimmune GWAS studies (multiple sclerosis15 and

rheumatoid arthritis16) and looked for enrichment of strong association p-values among the top LeafCutter

sQTLs and GEUVADIS gene eQTLs (we removed the extended MHC region from this analysis). We found

that 1,205 LeafCutter sQTL SNPs and 901 GEUVADIS eQTL SNPs (the SNP with most significant p-value)

were also tested (with >5% MAF) in the multiple sclerosis genome-wide association study, and that 3,069

LeafCutter sQTL SNPs and 2,250 GEUVADIS eQTL SNPs were tested in the rheumatoid arthritis study.

We then took the QTLs and plotted the distribution of − log10(p-value) of their association to each trait

separately. As expected14, we found that LeafCutter sQTLs were more highly enriched in associations with

low p-values compared to GEUVADIS eQTLs in multiple sclerosis and were similarly enriched in rheumatoid

arthritis. This is notable because we considered a larger number of LeafCutter sQTLs than GEUVADIS

eQTLs for both diseases. These observations suggest that LeafCutter allows us to identify as many or more

disease-associated variants that act by affecting splicing as compared to those that act by affecting total

expression levels.

9.1 Prediction Models and S-PrediXcan

Prediction models were trained by fitting Elastic-Net linear models to each gene for the expression models

and to each intron cluster for the splicing models using nearby SNPs dosages as features. Before fitting

the models, we removed non biallelic SNPs and any ambiguously stranded SNPs from the genotype data.

We downloaded normalized and PEER corrected expression data from the GEUVADIS study. Intron ex-

cision traits were corrected for genetic principal components and covariates (as outlined above). Once the

data had been preprocessed, for each gene or intron cluster, SNPs within 1Mb upstream and 1Mb down-

stream of their start and end sites were selected as variables for the model. Using the R package glmnet

we fit a 10-fold cross-validated Elastic-Net linear model using a mixing parameter of 0.5 for each gene

and intron cluster. Further details can be found in17,18,19 and training pipelines can be downloaded from

github.com/hakyimlab/PredictDBPipeline.

A total of 4625 gene associations were obtained for the genetic expression model, and 41196 intron quan-

tification cluster associations for the splicing model, that had a model prediction FDR < 5% (computed
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from the correlation between cross validated prediction and observed values).

We downloaded genomewide association meta analysis (GWAMA) results for 40 phenotypes from 18

consortia and performed S-PrediXcan analysis using both expression and intron models. The full list of

traits and consortia is displayed in Supplementary Note Table 3.

10 Processed data availability

See Supplementary Note Tables 3 and 4.
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11 Supplementary Note Tables

Tissue Sample Number
Heart 153
Testis 67
Spleen 7
Skin 340
Brain 422
Colon 86
Blood 270

Pancreas 66
Adipose Tissue 172

Lung 151
Esophagus 238

Muscle 176
Kidney 8
Liver 35

Supplementary Note Table 1: Sample sizes of processed GTEx RNA-seq short read data by tissue type.

Tissue Number of individuals
Heart 95
Blood 170
Lung 128

Thyroid 118

Supplementary Note Table 2: Sample sizes of processed GTEx .bam files for sQTL mapping.
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Consortium Phenotype URL
PGC Attention Deficit/Hyperactivity Disorder med.unc.edu/pgc/results-and-downloads
PGC Bipolar Disorder med.unc.edu/pgc/results-and-downloads
PGC Major Depressive Disorder med.unc.edu/pgc/results-and-downloads
PGC Autistic Spectrum Disorder med.unc.edu/pgc/results-and-downloads
PGC Schizophrenia med.unc.edu/pgc/results-and-downloads
CIAC Clozapine-Induced Agranulocytosis med.unc.edu/pgc/results-and-downloads
CONVERGE Major Depressive Disorder well.ox.ac.uk/converge
IGAP Alzheimer web.pasteur-lille.fr/en/recherche/u744/igap/igap download.php
TAG Tobacco Cigarettes per Day med.unc.edu/pgc/results-and-downloads
IBD Inflammatory Bowel Disease ibdgenetics.org/
IBD Ulcerative Colitis ibdgenetics.org/
IBD Crohn’s Disease ibdgenetics.org/
GIANT Body Mass Index broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

GIANT Waist-to-Hip Ratio broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

GIANT Waist Circumference broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

GIANT Hip Circumference broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

Supplementary Note Table 3: List of Genome-wide Association Meta Analysis (GWAMA) Consortia and
phenotypes.

Data Accession
RNA-seq and genotype (GEUVADIS) E-GEUV-3 (ArrayExpress)

RNA-seq (Merkin et al., 2012) GSE41637 (GEO)
RNA-seq and genotype (GTEx) phs000424.v6.p1 (dbGaP)

Supplementary Note Table 4: RNA-seq accession codes.
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12 Supplementary Figures

Supplementary Figure 1: Several types of common alternatively splicing events are captured by the alter-
native excision of introns.
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Supplementary Figure 2: Barplots showing the number of alternatively used junctions annotated from
our GTEx analyses that were found in Intropolis6. phenopredict8 was used to predict the tissue type
corresponding to the SRA samples analyzed in Intropolis. For each set of junctions, the proportion of
junctions that were found (at least 1 read) in any SRA sample (Any), or found in samples which were
predicted to be from testis (Testis) are highlighted. The predicted tissues with the highest number of
supported junctions are colored in purple. Eighty-six percent of all novel alternatively used testis junctions
from our LeafCutter analysis could be found in testis samples within SRA (not including GTEx).
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Supplementary Figure 3: (a) Distribution of the number of different GTEx tissues in which junctions
predicted to be absent, or present in three commonly-used annotation databases, could be detected. (b)
Relative junction usage in multiple GTEx organs of annotated and unannotated junctions identified in four
GTEx organs. (c) Distribution of LeafCutter clusters from GTEx samples in terms of their splicing types.
Clusters with only annotated junctions and clusters with unannotated junctions were further separated.
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Supplementary Figure 4: PhastCons score distribution of splice site of novel introns. While ∼60% of
annotated splice sites have local phastCons score >0.6, only 15-25% of unannotated splice sites do. Thus
∼80% of novel splice sites may represent noisy intron excision events.
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Supplementary Figure 5: Comparison between beta-binomial and Dirichlet-multinomial models for differ-
ential splicing analyses, performed on 10 male brain vs. heart samples from GTEx. Two approaches for
combining per-intron p-values into cluster level introns are compared: Bonferroni correction and Fisher’s
combined test. Bonferroni is very conservative, as expected. Fisher’s combined test has considerably lower
power than the multinomial approaches. However, only v2 of the Dirichlet-multinomial (which uses a per
intron concentration/overdispersion parameter) is well calibrated under permutations.
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Supplementary Figure 6: Memory usage (RAM) of four differential splicing methods applied to comparisons
between 3, 5, 10, and 15 YRI vs CEU LCLs RNA-seq samples. We omitted the 15v15 MAJIQ run due to
its expensive resource usage (both in terms of time and RAM). Right panel shows usage in log scale.
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Supplementary Figure 7: Cumulative distributions of differential splicing test p-values (1-posterior for
MAJIQ) for the all YRI versus CEU LCLs comparison (red). The distribution of test p-values for the
permuted comparisons are also shown (black). * Cufflinks2 reports 19 significantly differentially spliced
genes in the 3 vs 3 comparison, but none in the other comparisons.
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Supplementary Figure 8: Receiver operating characteristic (ROC) curve of LeafCutter, Cufflinks2, rMATS
and MAJIQ when evaluating differential splicing of genes with transcripts simulated to have varying levels
of differential expression. Top panel shows ROC curves when excluding genes that were not tested by each
respective methods. While the bottom plot includes genes that were not tested in the calculation of true
positive rate.
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Supplementary Figure 9: LeafCutter is effective even with as few as 8 samples. Here we performed
differential splicing analysis of 4 male brain vs 4 male muscle samples, and compared to results using 220
samples. a) p-values under permutations are well-calibrated. b-c) p-values and effect sizes are highly
correlated between the two sample size datasets. d) Significant disparity in effect sizes between the two
sample sizes is primarily driven by an intron being unique to a tissue when N = 8.
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Supplementary Figure 10: Hierarchical clustering on all 1,258 introns that had no missing values in any of
the samples.

33



Supplementary Figure 11: We restricted to introns that were found to be differentially excised between
human tissues (p-value < 10−10 and effect size > 1.0)

Supplementary Figure 12: Sharing of sQTL discoveries between Cufflinks2, Altrans, and LeafCutter esti-
mated using Storey’s π0 method.
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Supplementary Figure 13: Meta-cluster representation of position of all 4,543 sQTLs identified at 1%FDR.

Supplementary Figure 14: Functional enrichment of 4,543 sQTLs identified at 1%FDR from CEU GEU-
VADIS data. Bar represent 95% confidence interval from 500 bootstraps.
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Supplementary Figure 15: Example of a shared sQTL.

Supplementary Figure 16: Example of a tissue-specific sQTL.
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Supplementary Note Figure 1: Helper method and LeafCutter workflow for intron clustering.
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Supplementary Note Figure 2: Simulated isoform usage under the null of no differential splicing shows
Cufflinks2 p-values are overly conservative.
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Supplementary Note Figure 3: Scatter and violin plots of the p-value and posterior distribution of differential
test statistics binned by true, simulated, effective transcript fold-change. For each method, tests of genes
with five or fewer transcripts and genes with more than five transcripts are plotted on the upper and bottom
panels, respectively. We observed a decrease in power to detect differential splicing as transcript number
increases using Cufflinks2, but not for the three other methods. Red dots represent genes with no tested
splicing event.
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Supplementary Note Figure 4: (a) Correlation of computed differential splicing − log10 (p-values) of introns
between a 15 YRI vs 15 CEU LCLs comparison and 3 vs 3, 5 vs 5, and 10 vs 10 comparisons. (b) QQ-plot
of the differentially splicing signal found using rMATS in a comparison between 15 YRI and 15 CEU LCLs
samples. Differentially spliced genes detected using LeafCutter and MAJIQ, but not Cufflinks2, are highly
enriched in genes detected using rMATS.

Supplementary Note Figure 5: Estimates of concordances between differentially spliced genes detected using
LeafCutter and rMATS genes (a) and between LeafCutter or rMATS genes and MAJIQ genes (b). Genes
were ranked in terms of their significance levels (from LeafCutter and rMATS) and grouped into bins of size
50. Dashed lines mark 245, i.e. the number of differentially spliced genes detected using LeafCutter at 5%
FDR. (c) Estimates of the proportion of shared splice sites between differentially spliced introns predicted
using LeafCutter and introns predicted to be differentially spliced using rMATS and MAJIQ. Genes were
ranked in terms of their significance levels (LeafCutter) and grouped into bins of size 50.
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Supplementary Note Figure 6: Comparisons of junction read numbers between STAR and OLego across 5
random GTEx samples. Only junctions with total reads of more than 16, across both aligners, are shown.
Note that only junctions which were found using OLego in a bigger panel of GTEx tissues (i.e. all GTEx
samples in this study) were considered.

Supplementary Note Figure 7: Number of junctions that were found in at least X percent of all SRA
samples, by tissue.
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Supplementary Note Figure 8: Distribution of SNP-gene splicing association p-values. Three panels corre-
spond to sQTLs identified at 10% FDR using LeafCutter, Altrans, and Cufflinks2, respectively.
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Supplementary Note Figure 9: (a) Distribution of median LCLs gene expression levels for all genes (top)
and genes with one or more LeafCutter sQTLs. (b) Scatter plot of LeafCutter p-value associations with
respect to the expression levels of the corresponding genes. Dashed lines correspond to approximately 0.025
RPKM.
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